Kidney, splanchnic, and leg protein turnover in humans. Insight from leucine and phenylalanine kinetics.

نویسندگان

  • P Tessari
  • G Garibotto
  • S Inchiostro
  • C Robaudo
  • S Saffioti
  • M Vettore
  • M Zanetti
  • R Russo
  • G Deferrari
چکیده

The rate of kidney protein turnover in humans is not known. To this aim, we have measured kidney protein synthesis and degradation in postabsorptive humans using the arterio-venous catheterization technique combined with 14C-leucine, 15N-leucine, and 3H-phenylalanine tracer infusions. These measurements were compared with those obtained across the splanchnic bed, the legs (approximately muscle) and in the whole body. In the kidneys, protein balance was negative, as the rate of leucine release from protein degradation (16.8 +/- 5.1 mumol/min.1.73 m2) was greater (P < 0.02) than its uptake into protein synthesis (11.6 +/- 5.1 mumol/min. 1.73 m2). Splanchnic net protein balance was approximately 0 since leucine from protein degradation (32.1 +/- 9.9 mumol/min. 1.73 m2) and leucine into protein synthesis (30.8 +/- 11.5 mumol/min. 1.73 m2) were not different. In the legs, degradation exceeded synthesis (27.4 +/- 6.6 vs. 20.3 +/- 6.5 mumol/min. 1.73 m2, P < 0.02). The kidneys extracted alpha-ketoisocaproic acid, accounting for approximately 70% of net splanchnic alpha-ketoisocaproic acid release. The contributions by the kidneys to whole-body leucine rate of appearance, utilization for protein synthesis, and oxidation were approximately 11%, approximately 10%, and approximately 26%, respectively; those by the splanchnic area approximately 22%, approximately 27%, and approximately 18%; those from estimated total skeletal muscle approximately 37%, approximately 34%, and approximately 48%. Estimated fractional protein synthetic rates were approximately 42%/d in the kidneys, approximately 12% in the splanchnic area, and approximately 1.5% in muscle. This study reports the first estimates of kidney protein synthesis and degradation in humans, also in comparison with those measured in the splanchnic area, the legs, and the whole-body.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of blood cells in leucine kinetics across the human kidney.

To evaluate the role of blood cells in interorgan amino acid transport and in the estimates of regional protein turnover, we studied the effects of plasma vs. whole blood sampling on regional leucine kinetics in postabsorptive humans. Studies were carried out by combining the arteriovenous difference technique with the measurement of [14C]- and [15N]leucine isotope exchange across the human kid...

متن کامل

Protein turnover and amino acid transport kinetics in end-stage renal disease.

Protein and amino acid metabolism is abnormal in end-stage renal disease (ESRD). Protein turnover is influenced by transmembrane amino acid transport. The effect of ESRD and hemodialysis (HD) on intracellular amino acid transport kinetics is unknown. We studied intracellular amino acid transport kinetics and protein turnover by use of stable isotopes of phenylalanine, leucine, lysine, alanine, ...

متن کامل

Basal muscle intracellular amino acid kinetics in women and men.

Sexual dimorphism in skeletal muscle mass is apparent, with men having more muscle mass and larger individual muscle cells. However, no sex-based differences have been detected in blood forearm phenylalanine turnover, although whole body leucine oxidation has been reported to be greater in men than in women. We hypothesized that sex differences in intracellular amino acid turnover may account f...

متن کامل

Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans.

The rates of protein synthesis and degradation and of amino acid transport were determined in the leg muscle of untrained postabsorptive normal volunteers at rest and approximately 3 h after a resistance exercise routine. The methodology involved use of stable isotopic tracers of amino acids, arteriovenous catheterization of the femoral vessels, and biopsy of the vastus lateralis muscle. During...

متن کامل

Post-Prandial Protein Handling: You Are What You Just Ate

BACKGROUND Protein turnover in skeletal muscle tissue is highly responsive to nutrient intake in healthy adults. OBJECTIVE To provide a comprehensive overview of post-prandial protein handling, ranging from dietary protein digestion and amino acid absorption, the uptake of dietary protein derived amino acids over the leg, the post-prandial stimulation of muscle protein synthesis rates, to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 98 6  شماره 

صفحات  -

تاریخ انتشار 1996